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Fractals
Scattered height

X - topological space
H(X ) - the space of nonempty, compact subsets of X

Definition

An Iterated Function System (IFS) on X is a dynamical system
on H(X ) generated by a finite family F of continuous maps
X → X .

K ∈ H(X ) F(K ) =
⋃
f ∈F

f (K )

Definition

The attractor of the IFS F it is a nonempty compact set A ⊂ X
such that A = F(A) and for every compact set K ∈ H(X )
the sequence

(
Fn(K )

)∞
n=1

converges to A in the Vietoris topology
on H(X ).
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Definition

A compact space X =
⋃

f ∈F f (X ) for continuous f : X → X is

topological fractal if X is a Hausdorff space and each f ∈ F
is topologically contracting; for every open cover U of X there
is n ∈ N such that for any maps f1, . . . , fn ∈ F the set
f1 ◦ · · · ◦ fn(X ) ⊂ U ∈ U .

Banach fractal if X is metrizable and each f ∈ F is a
Banach contraction with respect to some metric that
generates the topology of X .

Banach ultrafractal if X is metrizable, the family (f (X ))f ∈F
is disjoint and for any ε > 0 each f ∈ F has Lip(f ) < ε with
respect to some ultrametric generating the topology of X .

A metric d on X is called an ultrametric if it satisfies the strong
triangle inequality d(x , z) ≤ max{d(x , y), d(y , z)} for x , y , z ∈ X .
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Fact 1

For any compact metrizable space we have the implications

Banach ultrafractal ⇒ Banach fractal ⇒ topological fractal

Fact 2

The topology of a compact metrizable space X is generated by an
ultrametric if and only if X is zero-dimensional (has a base of
closed-and-open sets).
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Main theorem

Theorem

For a zero-dimensional compact metrizable space X the following
conditions are equivalent:

1 X is a topological fractal;

2 X is a Banach fractal;

3 X is a Banach ultrafractal;

4 the scattered height ~(X ) of X is not a countable limit ordinal
(so, ~(X ) is either ∞ or a countable successor ordinal).
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Scattered height

For a topological space X let

X ′ = {x ∈ X : x is an accumulation point of X}

be the Cantor-Bendixson derivative of X .

X (α+1) = (X (α))′

X (α) =
⋂
β<α X

(β) for a limit ordinal

X (∞) =
⋂
α X

(α) - the perfect kernel of X

Definition

For a scattered topological space X we define its height

~(X ) = min{β : X (β) is finite}.

For an uncountable space X we put ~(X ) =∞.
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Unital spaces

Definition

A compact metrizable space X will be called unital if X is either
uncountable or X is countable and the set X (~(X )) is a singleton.

Each compact metrizable space can be written as a finite
topological sum of its unital subspaces.
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Main theorem (proof)

Theorem

For a zero-dimensional compact metrizable space X the following
conditions are equivalent:

1 X is a topological fractal;

2 X is a Banach fractal;

3 X is a Banach ultrafractal;

4 the scattered height ~(X ) of X is not a countable limit ordinal
(so, ~(X ) is either ∞ or a countable successor ordinal).

(3)⇒ (2)⇒ (1) by the definitions
(1)⇒ (4) follows form [1] and [2]
(4)⇒ (3)
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Tree

T - tree with the (unique)
smallest element minT (a root)

x ∈ T a set succ(x)=
minimal elements of
{y ∈ T : x < y} - the set of
successors of x

a branch of T - any
maximal linearly ordered
subset of T

∂T the set of all branches of
T - boundary of the tree T

for x̄ , ȳ ∈ ∂T , x̄ 6= ȳ let
x̄ ∧ ȳ = max(x̄ ∩ ȳ) ∈ T
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x̄ ∧ ȳ = max(x̄ ∩ ȳ) ∈ T
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Height tree

(T , ~) – the height tree
~ : T → {−1,∞} ∪ ω1 – the height function on T
such that for every vertex x ∈ T :

succ(x) contains exactly one point ∗x of height ~(∗x) = −1;

if ~(x) ∈ {−1, 0}, then succ(x) = {∗x} and
if ~(x) > 0, then the set succ(x) is countable;

if ~(x) =∞, then almost every points of succ(x) have height
∞;

if 0 < ~(x) < ω1, then

~(x) = sup
y∈succ(x)

(~(y) + 1) = lim
y∈succ(x)

(~(y) + 1)

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height tree

(T , ~) – the height tree
~ : T → {−1,∞} ∪ ω1 – the height function on T
such that for every vertex x ∈ T :

succ(x) contains exactly one point ∗x of height ~(∗x) = −1;

if ~(x) ∈ {−1, 0}, then succ(x) = {∗x} and
if ~(x) > 0, then the set succ(x) is countable;

if ~(x) =∞, then almost every points of succ(x) have height
∞;

if 0 < ~(x) < ω1, then

~(x) = sup
y∈succ(x)

(~(y) + 1) = lim
y∈succ(x)

(~(y) + 1)

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height function

succ(x) contains exactly one point ∗x of height ~(∗x) = −1

~(x) ∈ {−1, 0} ⇒ succ(x) = {∗x}
~(x) > 0 ⇒ succ(x) is countable

~(x) =∞ ⇒ almost every points of succ(x) have height ∞

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height function

succ(x) contains exactly one point ∗x of height ~(∗x) = −1

~(x) ∈ {−1, 0} ⇒ succ(x) = {∗x}

~(x) > 0 ⇒ succ(x) is countable

~(x) =∞ ⇒ almost every points of succ(x) have height ∞

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height function

succ(x) contains exactly one point ∗x of height ~(∗x) = −1

~(x) ∈ {−1, 0} ⇒ succ(x) = {∗x}
~(x) > 0 ⇒ succ(x) is countable

~(x) =∞ ⇒ almost every points of succ(x) have height ∞

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height function

succ(x) contains exactly one point ∗x of height ~(∗x) = −1

~(x) ∈ {−1, 0} ⇒ succ(x) = {∗x}
~(x) > 0 ⇒ succ(x) is countable

~(x) =∞ ⇒ almost every points of succ(x) have height ∞

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

Height function

if 0 < ~(x) < ω1, then

~(x) = sup
y∈succ(x)

(~(y) + 1) = lim
y∈succ(x)

(~(y) + 1)

(for any α < ~(x) almost every y ∈ succ(x) α < ~(y) + 1 ≤ ~(x))
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Normed height tree

Definition

A norm ‖ · ‖ : T → R on a height tree T is a function having the
following properties:

for any vertices x ≤ y of T we get ‖x‖ ≥ ‖y‖ ≥ 0;

a vertex x ∈ T has norm ‖x‖ = 0 if and only if ~(x) = −1;

limx∈T ‖x‖ = 0, which means that for any positive real
number ε the set {x ∈ T : ‖x‖ ≥ ε} is finite.

A normed height tree is a height tree (T , ~) with a norm ‖ · ‖.
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Canonical ultrametric

The norm ‖ · ‖ of a normed height tree T determines a canonical
ultrametric d on ∂T defined by

d(x̄ , ȳ) = max{‖z‖ : z ∈ (x̄ ∪ ȳ) ∩ succ(x̄ ∧ ȳ)}
for any distinct branches x̄ , ȳ ∈ ∂T .
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Step 1 of the proof

Proposition 1

Each unital zero-dimensional compact metrizable space X is
homeomorphic to the boundary ∂T of some normed height tree T
such that ~(minT ) = ~(X ).
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Fix d ≤ 1
Inductively construct a sequence (Un)n∈ω of covers of X
(Un+1 � Un) containing sets which are

disjoint

unital

diam ≤ 2−n+1

points or clopen sets
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Construction

Let U0 = {X}
Un → Un+1

Take U ∈ Un
∗ ∈ U(~(U))

Find a disjoint finite cover of U
by clopen subsets of diam ≤ 2−n.
Find a unique set ∗ ∈ V and
choose a neighborhood base
{Vn}∞n=1 at ∗ consisting of
clopen sets such that Vn ⊂ Vn−1

for every n ∈ N.
We can assume that
limn→∞(~(Vn \ Vn+1) + 1) =
~(V ) = ~(U)
(∞+ 1 =∞)
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Homeomorphism

T = {(n,U) : n ∈ N, U ∈ Un}
where (n,U) ≤ (m,V ) if n ≤ m and V ⊂ U

~(n,U) =

{
−1, if U = {∗},
~(U), otherwise.

‖(n,U)‖ = diam(U ∪ {∗})
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Homeomorphism

T = {(n,U) : n ∈ N, U ∈ Un}
where (n,U) ≤ (m,V ) if n ≤ m and V ⊂ U

~(n,U) =

{
−1, if U = {∗},
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Step 2 of the proof

Proposition 2

The boundary ∂T of normed height tree T such that ~(minT ) is
not a limit ordinal, is a Banach ultrafractal.
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Height morphism

Definition

For height trees T ,S a map f : T → S is called a height
morphism if for every x ∈ T the following conditions are satisfied:

~(f (x)) ≤ ~(x),

f (succ(x)) ⊂ succ(f (x)) and f (∗x) = ∗f (x),

for each y ∈ succ(f (x)) \ {∗f (x)} there is at most one element
z ∈ succ(x) \ {∗x} such that y = f (z).

Magdalena Nowak Zero-dimensional spaces as topological and Banach fractals



Definitions
Main theorem

Trees
Proof

λ-Lipschitz maps

f : T → S  f̄ : ∂T → ∂S
f̄ (t̄) = the unique branch of S containing the linearly ordered set
f (t̄) = {f (x) : x ∈ t̄}.

Definition

Let T ,S be normed height trees. A height morphism f : T → S is
called λ-Lipschitz for a real constant λ if ‖f (x)‖ ≤ λ · ‖x‖ for
each x ∈ T .

Lemma

Let T ,S be normed height trees and λ be a positive real constant.
For each λ-Lipschitz height morphism f : T → S , the induced
boundary map f̄ : ∂T → ∂S is λ-Lipschitz with respect to the
canonical ultrametrics on ∂T and ∂S .
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Lemma

For any height trees T ,S with ~(minT ) ≥ ~(minS) there exists a
surjective height morphism f : T → S .
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∂T is a Banach ultrafractal

L = {x ∈ succ(minT ) : ~(x) + 1 = ~(minT )} = {xn}n∈N

F = succ(minT ) \
(
L ∪ {∗minT}

)
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Function system {f , g}
Define a function
f : succ(minT )→ succ(minT )
by the formula

f (x) =

{
xn+1 if x = xn for some n ∈ N
∗minT otherwise.
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T = f (T ) ∪ g(T )  ∂T = f̄ (∂T ) ∪ ḡ(∂T )
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End of the proof

F = {f , g}

T−1 = ∅
T0 = {minT}
Tn+1 = F (n+1)(minT ) = f (Tn) ∪ g(Tn) for n ∈ N

‖x‖ =

{
0 if ~(x) = −1

λn x ∈ Tn \ Tn−1.
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