Zero-dimensional spaces as topological and Banach fractals

Magdalena Nowak

Jan Kochanowski University in Kielce

Hejnice 2015

joint work with T. Banakh, N. Novosad, F. Strobin

X - topological space

 $\mathcal{H}(X)$ - the space of nonempty, compact subsets of X

Definition

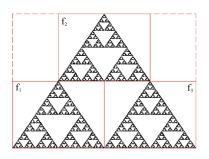
An **Iterated Function System** (IFS) on X is a dynamical system on $\mathcal{H}(X)$ generated by a finite family \mathcal{F} of continuous maps $X \to X$.

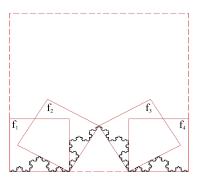
$$K \in \mathcal{H}(X)$$
 $\mathcal{F}(K) = \bigcup_{f \in \mathcal{F}} f(K)$

Definition

The **attractor of the IFS** \mathcal{F} it is a nonempty compact set $A \subset X$ such that $A = \mathcal{F}(A)$ and for every compact set $K \in \mathcal{H}(X)$ the sequence $\left(\mathcal{F}^n(K)\right)_{n=1}^{\infty}$ converges to A in the Vietoris topology on $\mathcal{H}(X)$.

Classical IFS-attractors





Definition

A compact space $X = \bigcup_{f \in \mathcal{F}} f(X)$ for continuous $f: X \to X$ is

- **topological fractal** if X is a Hausdorff space and each $f \in \mathcal{F}$ is *topologically contracting*; for every open cover \mathcal{U} of X there is $n \in \mathbb{N}$ such that for any maps $f_1, \ldots, f_n \in \mathcal{F}$ the set $f_1 \circ \cdots \circ f_n(X) \subset \mathcal{U} \in \mathcal{U}$.
- Banach fractal if X is metrizable and each $f \in \mathcal{F}$ is a Banach contraction with respect to some metric that generates the topology of X.
- Banach ultrafractal if X is metrizable, the family $(f(X))_{f \in \mathcal{F}}$ is disjoint and for any $\varepsilon > 0$ each $f \in \mathcal{F}$ has $\operatorname{Lip}(f) < \varepsilon$ with respect to some *ultrametric* generating the topology of X.

A metric d on X is called an *ultrametric* if it satisfies the strong triangle inequality $d(x, z) \le \max\{d(x, y), d(y, z)\}$ for $x, y, z \in X$.

Fact 1

For any compact metrizable space we have the implications

Banach ultrafractal \Rightarrow Banach fractal \Rightarrow topological fractal

Fact 2

The topology of a compact metrizable space X is generated by an ultrametric if and only if X is zero-dimensional (has a base of closed-and-open sets).

Main theorem

Theorem

- \bullet X is a topological fractal;
- X is a Banach fractal;
- X is a Banach ultrafractal;
- the scattered height $\hbar(X)$ of X is not a countable limit ordinal (so, $\hbar(X)$ is either ∞ or a countable successor ordinal).

Scattered height

For a topological space X let

$$X' = \{x \in X : x \text{ is an accumulation point of } X\}$$

be the Cantor-Bendixson derivative of X.

- $X^{(\alpha+1)} = (X^{(\alpha)})'$
- $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal
- $X^{(\infty)} = \bigcap_{\alpha} X^{(\alpha)}$ the perfect kernel of X

Definition

For a scattered topological space X we define its height

$$\hbar(X) = \min\{\beta : X^{(\beta)} \text{ is finite}\}\$$

For an uncountable space X we put $\hbar(X) = \infty$.

Scattered height

For a topological space X let

$$X' = \{x \in X : x \text{ is an accumulation point of } X\}$$

be the Cantor-Bendixson derivative of X.

- $X^{(\alpha+1)} = (X^{(\alpha)})'$
- $X^{(lpha)} = \bigcap_{eta < lpha} X^{(eta)}$ for a limit ordinal
- $X^{(\infty)} = \bigcap_{\alpha} X^{(\alpha)}$ the perfect kernel of X

Definition

For a scattered topological space X we define its height

$$\hbar(X) = \min\{\beta : X^{(\beta)} \text{ is finite}\}\$$

For an uncountable space X we put $\hbar(X) = \infty$.

Scattered height

For a topological space X let

$$X' = \{x \in X : x \text{ is an accumulation point of } X\}$$

be the Cantor-Bendixson derivative of X.

- $X^{(\alpha+1)} = (X^{(\alpha)})'$
- $X^{(lpha)} = \bigcap_{eta < lpha} X^{(eta)}$ for a limit ordinal
- $X^{(\infty)} = \bigcap_{\alpha} X^{(\alpha)}$ the perfect kernel of X

Definition

For a scattered topological space X we define its height

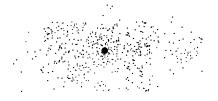
$$h(X) = \min\{\beta \colon X^{(\beta)} \text{ is finite}\}.$$

For an uncountable space X we put $\hbar(X) = \infty$.

Unital spaces

Definition

A compact metrizable space X will be called **unital** if X is either uncountable or X is countable and the set $X^{(\hbar(X))}$ is a singleton.

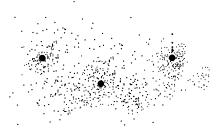


Each compact metrizable space can be written as a finite topological sum of its unital subspaces.

Unital spaces

Definition

A compact metrizable space X will be called **unital** if X is either uncountable or X is countable and the set $X^{(\hbar(X))}$ is a singleton.



Each compact metrizable space can be written as a finite topological sum of its unital subspaces.

Theorem

- X is a topological fractal;
- X is a Banach fractal;
- X is a Banach ultrafractal;
- the scattered height $\hbar(X)$ of X is not a countable limit ordinal (so, $\hbar(X)$ is either ∞ or a countable successor ordinal).

Theorem

- X is a topological fractal;
- X is a Banach fractal;
- X is a Banach ultrafractal;
- the scattered height $\hbar(X)$ of X is not a countable limit ordinal (so, $\hbar(X)$ is either ∞ or a countable successor ordinal).
- $(3) \Rightarrow (2) \Rightarrow (1)$ by the definitions

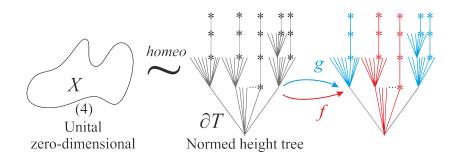
Theorem

- X is a topological fractal;
- X is a Banach fractal;
- X is a Banach ultrafractal;
- the scattered height $\hbar(X)$ of X is not a countable limit ordinal (so, $\hbar(X)$ is either ∞ or a countable successor ordinal).
- $(3) \Rightarrow (2) \Rightarrow (1)$ by the definitions
- $(1) \Rightarrow (4)$ follows form [1] and [2]

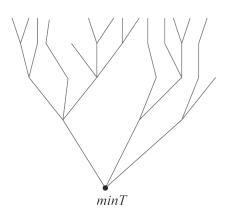
Theorem

- X is a topological fractal;
- X is a Banach fractal;
- X is a Banach ultrafractal;
- the scattered height $\hbar(X)$ of X is not a countable limit ordinal (so, $\hbar(X)$ is either ∞ or a countable successor ordinal).
- $(3) \Rightarrow (2) \Rightarrow (1)$ by the definitions
- $(1) \Rightarrow (4)$ follows form [1] and [2]
 - $(4) \Rightarrow (3)$

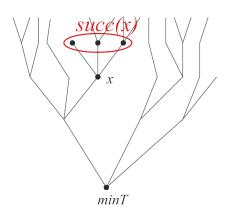
Idea of the proof



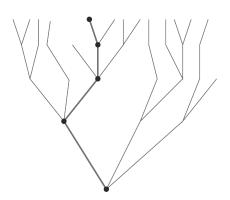
- x ∈ T a set succ(x)=
 minimal elements of
 {y ∈ T : x < y} the set of
 successors of x
- a branch of T any maximal linearly ordered subset of T
- \(\partial T\) the set of all branches of
 \(T\) boundary of the tree \(T\)
- for $\bar{x}, \bar{y} \in \partial T$, $\bar{x} \neq \bar{y}$ let $\bar{x} \wedge \bar{y} = \max(\bar{x} \cap \bar{y}) \in T$



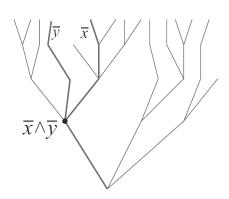
- x ∈ T a set succ(x)=
 minimal elements of
 {y ∈ T : x < y} the set of
 successors of x
- a branch of T any maximal linearly ordered subset of T
- ∂T the set of all branches of
 T boundary of the tree T
- for $\bar{x}, \bar{y} \in \partial T$, $\bar{x} \neq \bar{y}$ let $\bar{x} \wedge \bar{v} = \max(\bar{x} \cap \bar{v}) \in T$



- x ∈ T a set succ(x)=
 minimal elements of
 {y ∈ T : x < y} the set of
 successors of x
- a branch of T any maximal linearly ordered subset of T
- \(\partial T\) the set of all branches of
 \(T\) boundary of the tree \(T\)
- for $\bar{x}, \bar{y} \in \partial T$, $\bar{x} \neq \bar{y}$ let $\bar{x} \wedge \bar{y} = \max(\bar{x} \cap \bar{y}) \in T$



- x ∈ T a set succ(x)=
 minimal elements of
 {y ∈ T : x < y} the set of
 successors of x
- a branch of T any maximal linearly ordered subset of T
- \(\partial T\) the set of all branches of
 \(T\) boundary of the tree \(T\)
- for $\bar{x}, \bar{y} \in \partial T$, $\bar{x} \neq \bar{y}$ let $\bar{x} \wedge \bar{y} = \max(\bar{x} \cap \bar{y}) \in T$



Height tree

(T,\hbar) – the height tree $\hbar: T \to \{-1,\infty\} \cup \omega_1$ – the height function on T such that for every vertex $x \in T$:

- $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$;
- if $\hbar(x) \in \{-1,0\}$, then $\operatorname{succ}(x) = \{*_x\}$ and if $\hbar(x) > 0$, then the set $\operatorname{succ}(x)$ is countable;
- if $\hbar(x) = \infty$, then almost every points of $\operatorname{succ}(x)$ have height ∞ :
- if $0 < \hbar(x) < \omega_1$, then

$$\hbar(x) = \sup_{y \in \text{succ}(x)} (\hbar(y) + 1) = \lim_{y \in \text{succ}(x)} (\hbar(y) + 1)$$

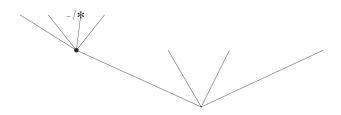
Height tree

 (T,\hbar) – the height tree $\hbar: T \to \{-1,\infty\} \cup \omega_1$ – the height function on T such that for every vertex $x \in T$:

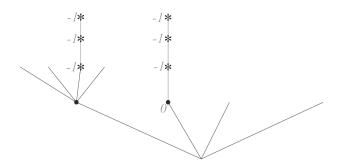
- $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$;
- if $\hbar(x) \in \{-1,0\}$, then $\operatorname{succ}(x) = \{*_x\}$ and if $\hbar(x) > 0$, then the set $\operatorname{succ}(x)$ is countable;
- if $\hbar(x) = \infty$, then almost every points of $\operatorname{succ}(x)$ have height ∞ ;
- if $0 < \hbar(x) < \omega_1$, then

$$\hbar(x) = \sup_{y \in \text{succ}(x)} (\hbar(y) + 1) = \lim_{y \in \text{succ}(x)} (\hbar(y) + 1)$$

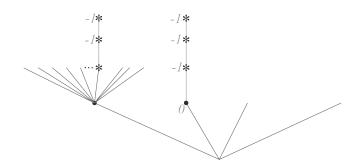
• $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$



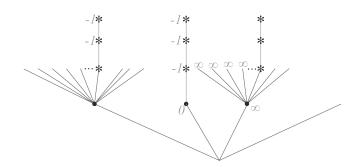
- $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$
- $\hbar(x) \in \{-1,0\}$ $\Rightarrow \operatorname{succ}(x) = \{*_x\}$



- $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$
- $\hbar(x) \in \{-1, 0\}$ $\Rightarrow \operatorname{succ}(x) = \{*_x\}$
- $\hbar(x) > 0 \implies \operatorname{succ}(x)$ is countable



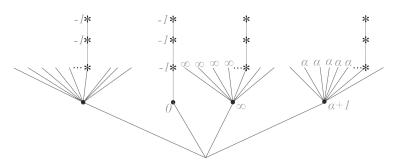
- $\operatorname{succ}(x)$ contains exactly one point $*_x$ of height $\hbar(*_x) = -1$
- $\hbar(x) \in \{-1, 0\}$ $\Rightarrow \operatorname{succ}(x) = \{*_x\}$
- $\hbar(x) > 0$ $\Rightarrow \operatorname{succ}(x)$ is countable
- $h(x) = \infty$ \Rightarrow almost every points of $\operatorname{succ}(x)$ have height ∞



if $0 < \hbar(x) < \omega_1$, then

$$\hbar(x) = \sup_{y \in \text{succ}(x)} (\hbar(y) + 1) = \lim_{y \in \text{succ}(x)} (\hbar(y) + 1)$$

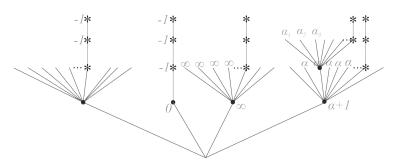
(for any $\alpha < \hbar(x)$ almost every $y \in \operatorname{succ}(x)$ $\alpha < \hbar(y) + 1 \le \hbar(x)$)



if $0 < \hbar(x) < \omega_1$, then

$$\hbar(x) = \sup_{y \in \text{succ}(x)} (\hbar(y) + 1) = \lim_{y \in \text{succ}(x)} (\hbar(y) + 1)$$

(for any $\alpha < \hbar(x)$ almost every $y \in \operatorname{succ}(x)$ $\alpha < \hbar(y) + 1 \le \hbar(x)$)



Normed height tree

Definition

A *norm* $\|\cdot\|:T\to\mathbb{R}$ on a height tree T is a function having the following properties:

- for any vertices $x \le y$ of T we get $||x|| \ge ||y|| \ge 0$;
- a vertex $x \in T$ has norm ||x|| = 0 if and only if $\hbar(x) = -1$;
- $\lim_{x \in T} ||x|| = 0$, which means that for any positive real number ε the set $\{x \in T : ||x|| \ge \varepsilon\}$ is finite.

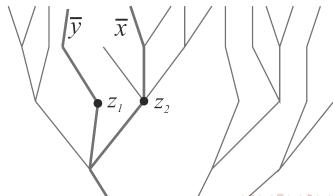
A **normed height tree** is a height tree (T, \hbar) with a norm $\|\cdot\|$.

Canonical ultrametric

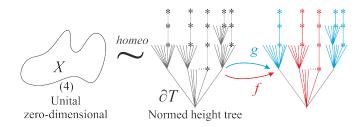
The norm $\|\cdot\|$ of a normed height tree T determines a canonical ultrametric d on ∂T defined by

$$d(\bar{x}, \bar{y}) = \max\{\|z\| : z \in (\bar{x} \cup \bar{y}) \cap \operatorname{succ}(\bar{x} \wedge \bar{y})\}\$$

for any distinct branches $\bar{x}, \bar{y} \in \partial T$.



Step 1 of the proof



Proposition 1

Each unital zero-dimensional compact metrizable space X is homeomorphic to the boundary ∂T of some normed height tree T such that $\hbar(\min T) = \hbar(X)$.

Fix d < 1

Inductively construct a sequence $(\mathcal{U}_n)_{n\in\omega}$ of covers of X $(\mathcal{U}_{n+1}\succ\mathcal{U}_n)$ containing sets which are

- disjoint
- unital
- diam $< 2^{-n+1}$
- points or clopen sets

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$

Take $U \in \mathcal{U}_n$

 $* \in U^{(\hbar(U))}$

Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$ Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that $\lim_{n\to\infty} (\hbar(V_n \setminus V_{n+1}) + 1) = \hbar(V) = \hbar(U)$ $(\infty + 1 - \infty)$

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$

U

Take $U \in \mathcal{U}_n$ * $\in U^{(\hbar(U))}$

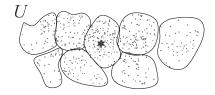
Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$ Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that $\lim_{n\to\infty}(\hbar(V_n\setminus V_{n+1})+1)=\hbar(V)=\hbar(U)$

$$(\infty + 1 = \infty)$$

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$



Take $U \in \mathcal{U}_n$ * $\in U^{(\hbar(U))}$

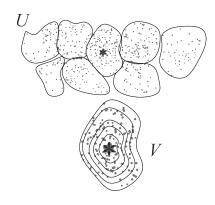
Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$.

Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that $\lim_{n\to\infty} (\hbar(V_n \setminus V_{n+1}) + 1) = \hbar(V) = \hbar(U)$ $(\infty + 1 = \infty)$

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$



Take
$$U \in \mathcal{U}_n$$

* $\in U^{(\hbar(U))}$

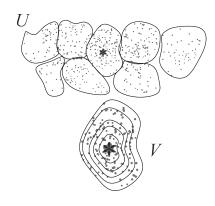
Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$. Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that $\lim_{n\to\infty} (\hbar(V_n \setminus V_{n+1}) + 1) = \hbar(V) = \hbar(U)$ $\hbar(\infty + 1 = \infty)$

Construction

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$



Take
$$U \in \mathcal{U}_n$$

* $\in U^{(\hbar(U))}$

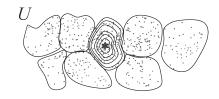
Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$. Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that
$$\lim_{n\to\infty}(\hbar(V_n\setminus V_{n+1})+1)=\hbar(V)=\hbar(U)$$
 $(\infty+1=\infty)$

Construction

Let
$$\mathcal{U}_0 = \{X\}$$

 $\mathcal{U}_n \to \mathcal{U}_{n+1}$

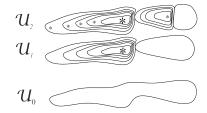


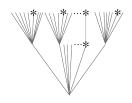
Take
$$U \in \mathcal{U}_n$$

* $\in U^{(\hbar(U))}$

Find a disjoint finite cover of U by clopen subsets of diam $\leq 2^{-n}$. Find a unique set $* \in V$ and choose a neighborhood base $\{V_n\}_{n=1}^{\infty}$ at * consisting of clopen sets such that $V_n \subset V_{n-1}$ for every $n \in \mathbb{N}$.

We can assume that
$$\lim_{n\to\infty}(\hbar(V_n\setminus V_{n+1})+1)=\hbar(V)=\hbar(U)$$
 $(\infty+1=\infty)$

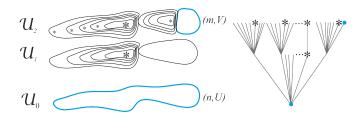




$$T = \{(n, U) : n \in \mathbb{N}, U \in \mathcal{U}_n\}$$
where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$

$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

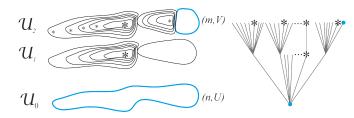
$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$T = \{(n, U) : n \in \mathbb{N}, \ U \in \mathcal{U}_n\}$$
where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$

$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

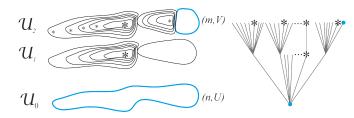
$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$T = \{(n, U) : n \in \mathbb{N}, \ U \in \mathcal{U}_n\}$$
where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$

$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

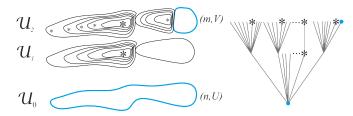
$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$T = \{(n, U) : n \in \mathbb{N}, \ U \in \mathcal{U}_n\}$$
where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$

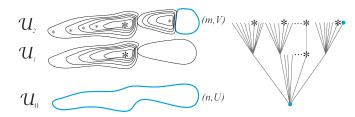
$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$T = \{(n, U) : n \in \mathbb{N}, \ U \in \mathcal{U}_n\}$$
 where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$
$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

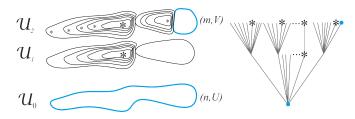
$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$T = \{(n, U) : n \in \mathbb{N}, \ U \in \mathcal{U}_n\}$$
where $(n, U) \leq (m, V)$ if $n \leq m$ and $V \subset U$

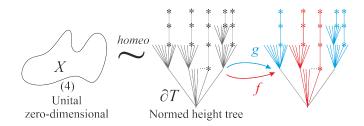
$$\hbar(n, U) = \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases}$$

$$\|(n, U)\| = \text{diam}(U \cup \{*\})$$



$$\begin{split} T &= \{(n,U): n \in \mathbb{N}, \ U \in \mathcal{U}_n\} \\ \text{where } (n,U) &\leq (m,V) \text{ if } n \leq m \text{ and } V \subset U \\ \hbar(n,U) &= \begin{cases} -1, & \text{if } U = \{*\}, \\ \hbar(U), & \text{otherwise.} \end{cases} \\ \|(n,U)\| &= \text{diam}(U \cup \{*\}) \\ h: X &\to \partial T, \quad h(x) = \{(n,U): n \in \mathbb{N}, \ x \in U\} \end{split}$$

Step 2 of the proof



Proposition 2

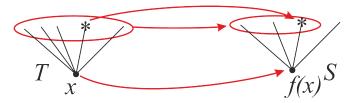
The boundary ∂T of normed height tree T such that $\hbar(\min T)$ is not a limit ordinal, is a Banach ultrafractal.

Height morphism

Definition

For height trees T, S a map $f: T \to S$ is called a **height morphism** if for every $x \in T$ the following conditions are satisfied:

- $\hbar(f(x)) \leq \hbar(x)$,
- $f(\operatorname{succ}(x)) \subset \operatorname{succ}(f(x))$ and $f(*_x) = *_{f(x)}$,
- for each $y \in \operatorname{succ}(f(x)) \setminus \{*_{f(x)}\}$ there is at most one element $z \in \operatorname{succ}(x) \setminus \{*_x\}$ such that y = f(z).



λ -Lipschitz maps

$$f: T \to S \quad \leadsto \quad \bar{f}: \partial T \to \partial S$$

 $ar{f}(ar{t})=$ the unique branch of S containing the linearly ordered set

$$f(\bar{t}) = \{f(x) : x \in \bar{t}\}.$$

Definition

Let T, S be normed height trees. A height morphism $f: T \to S$ is called λ -**Lipschitz** for a real constant λ if $||f(x)|| \le \lambda \cdot ||x||$ for each $x \in T$.

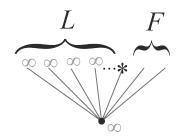
Lemma

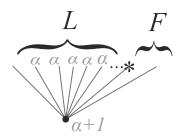
Let T,S be normed height trees and λ be a positive real constant. For each λ -Lipschitz height morphism $f:T\to S$, the induced boundary map $\bar f:\partial T\to\partial S$ is λ -Lipschitz with respect to the canonical ultrametrics on ∂T and ∂S .

Lemma

For any height trees T, S with $\hbar(\min T) \ge \hbar(\min S)$ there exists a surjective height morphism $f: T \to S$.

∂T is a Banach ultrafractal





$$L = \{x \in \operatorname{succ}(\min T) : \hbar(x) + 1 = \hbar(\min T)\} = \{x_n\}_{n \in \mathbb{N}}$$

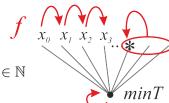
$$F = \operatorname{succ}(\min T) \setminus (L \cup \{*_{\min T}\})$$

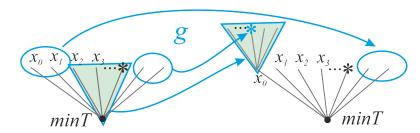
Function system $\{f,g\}$

Define a function

 $f: \operatorname{succ}(\min T) \to \operatorname{succ}(\min T)$ by the formula

$$f(x) = \begin{cases} x_{n+1} & \text{if } x = x_n \text{ for some } n \in \mathbb{N} \\ *_{\min T} & \text{otherwise.} \end{cases}$$





$$T = f(T) \cup g(T) \qquad \Rightarrow \qquad \partial T = \bar{f}(\partial T) \cup \bar{g}(\partial T)$$

End of the proof

$$\mathcal{F} = \{f, g\}$$

$$T_{-1} = \emptyset$$

$$T_{0} = \{\min T\}$$

$$T_{n+1} = \mathcal{F}^{(n+1)}(\min T) = f(T_{n}) \cup g(T_{n}) \text{ for } n \in \mathbb{N}$$

$$\|x\| = \begin{cases} 0 & \text{if } \hbar(x) = -1\\ \lambda^{n} & x \in T_{n} \setminus T_{n-1}. \end{cases}$$

Bibliography

- T. Banakh, W. Kubiś, N. Novosad, M. Nowak, F. Strobin, Contractive function systems, their attractors and metrization, will appear in Topological Methods in Nonlinear Analysis
- M. Nowak, *Topological classification of scattered IFS-attractors*, Topology Appl. **160** (2013), no. 14, 1889–1901.